distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5907
- Accuracy: 0.84
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.9893 | 1.0 | 113 | 1.8741 | 0.52 |
| 1.226 | 2.0 | 226 | 1.2133 | 0.68 |
| 1.0168 | 3.0 | 339 | 1.0044 | 0.71 |
| 0.657 | 4.0 | 452 | 0.8143 | 0.75 |
| 0.4526 | 5.0 | 565 | 0.6556 | 0.82 |
| 0.5037 | 6.0 | 678 | 0.6259 | 0.79 |
| 0.2173 | 7.0 | 791 | 0.6018 | 0.81 |
| 0.1015 | 8.0 | 904 | 0.6096 | 0.82 |
| 0.1529 | 9.0 | 1017 | 0.5950 | 0.83 |
| 0.0752 | 10.0 | 1130 | 0.5907 | 0.84 |
Framework versions
- Transformers 4.50.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Model tree for salym/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubertDataset used to train salym/distilhubert-finetuned-gtzan
Evaluation results
- Accuracy on GTZANself-reported0.840