SINet: Optimized for Qualcomm Devices
SINet is a machine learning model that is designed to segment people from close-up portrait images in real time.
This is based on the implementation of SINet found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| ONNX | w8a8 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| QNN_DLC | w8a16 | Universal | QAIRT 2.42 | Download |
| QNN_DLC | w8a8 | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
| TFLITE | w8a8 | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit SINet on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for SINet on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.semantic_segmentation
Model Stats:
- Model checkpoint: SINet.pth
- Input resolution: 224x224
- Number of output classes: 2 (foreground / background)
- Number of parameters: 91.9K
- Model size (float): 415 KB
- Model size (w8a8): 241 KB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| SINet | ONNX | float | Snapdragon® X Elite | 1.625 ms | 2 - 2 MB | NPU |
| SINet | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 1.056 ms | 0 - 116 MB | NPU |
| SINet | ONNX | float | Qualcomm® QCS8550 (Proxy) | 1.632 ms | 1 - 123 MB | NPU |
| SINet | ONNX | float | Qualcomm® QCS9075 | 2.048 ms | 1 - 3 MB | NPU |
| SINet | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.824 ms | 0 - 103 MB | NPU |
| SINet | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.737 ms | 0 - 104 MB | NPU |
| SINet | ONNX | w8a8 | Snapdragon® X Elite | 6.496 ms | 6 - 6 MB | NPU |
| SINet | ONNX | w8a8 | Snapdragon® 8 Gen 3 Mobile | 3.52 ms | 0 - 122 MB | NPU |
| SINet | ONNX | w8a8 | Qualcomm® QCS6490 | 37.434 ms | 7 - 10 MB | CPU |
| SINet | ONNX | w8a8 | Qualcomm® QCS8550 (Proxy) | 4.746 ms | 5 - 8 MB | NPU |
| SINet | ONNX | w8a8 | Qualcomm® QCS9075 | 6.79 ms | 6 - 9 MB | NPU |
| SINet | ONNX | w8a8 | Qualcomm® QCM6690 | 12.6 ms | 7 - 16 MB | CPU |
| SINet | ONNX | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 2.966 ms | 0 - 103 MB | NPU |
| SINet | ONNX | w8a8 | Snapdragon® 7 Gen 4 Mobile | 8.576 ms | 7 - 16 MB | CPU |
| SINet | ONNX | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 2.814 ms | 0 - 107 MB | NPU |
| SINet | QNN_DLC | float | Snapdragon® X Elite | 1.884 ms | 1 - 1 MB | NPU |
| SINet | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 1.109 ms | 0 - 47 MB | NPU |
| SINet | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 1.632 ms | 1 - 2 MB | NPU |
| SINet | QNN_DLC | float | Qualcomm® SA8775P | 8.556 ms | 1 - 37 MB | NPU |
| SINet | QNN_DLC | float | Qualcomm® QCS9075 | 1.97 ms | 1 - 3 MB | NPU |
| SINet | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 2.54 ms | 0 - 52 MB | NPU |
| SINet | QNN_DLC | float | Qualcomm® SA8295P | 2.484 ms | 0 - 36 MB | NPU |
| SINet | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.795 ms | 0 - 32 MB | NPU |
| SINet | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.645 ms | 1 - 38 MB | NPU |
| SINet | QNN_DLC | w8a16 | Snapdragon® X Elite | 2.042 ms | 0 - 0 MB | NPU |
| SINet | QNN_DLC | w8a16 | Snapdragon® 8 Gen 3 Mobile | 1.221 ms | 0 - 49 MB | NPU |
| SINet | QNN_DLC | w8a16 | Qualcomm® QCS8275 (Proxy) | 3.528 ms | 0 - 36 MB | NPU |
| SINet | QNN_DLC | w8a16 | Qualcomm® QCS8550 (Proxy) | 1.797 ms | 0 - 2 MB | NPU |
| SINet | QNN_DLC | w8a16 | Qualcomm® SA8775P | 2.135 ms | 0 - 39 MB | NPU |
| SINet | QNN_DLC | w8a16 | Qualcomm® QCS9075 | 2.036 ms | 2 - 4 MB | NPU |
| SINet | QNN_DLC | w8a16 | Qualcomm® QCS8450 (Proxy) | 2.247 ms | 0 - 51 MB | NPU |
| SINet | QNN_DLC | w8a16 | Qualcomm® SA7255P | 3.528 ms | 0 - 36 MB | NPU |
| SINet | QNN_DLC | w8a16 | Qualcomm® SA8295P | 2.868 ms | 0 - 35 MB | NPU |
| SINet | QNN_DLC | w8a16 | Snapdragon® 8 Elite For Galaxy Mobile | 0.913 ms | 0 - 37 MB | NPU |
| SINet | QNN_DLC | w8a16 | Snapdragon® 8 Elite Gen 5 Mobile | 0.743 ms | 0 - 39 MB | NPU |
| SINet | QNN_DLC | w8a8 | Snapdragon® X Elite | 1.492 ms | 0 - 0 MB | NPU |
| SINet | QNN_DLC | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.893 ms | 0 - 46 MB | NPU |
| SINet | QNN_DLC | w8a8 | Qualcomm® QCS8275 (Proxy) | 2.549 ms | 0 - 35 MB | NPU |
| SINet | QNN_DLC | w8a8 | Qualcomm® QCS8550 (Proxy) | 1.283 ms | 0 - 2 MB | NPU |
| SINet | QNN_DLC | w8a8 | Qualcomm® SA8775P | 1.534 ms | 0 - 37 MB | NPU |
| SINet | QNN_DLC | w8a8 | Qualcomm® QCS9075 | 1.454 ms | 2 - 4 MB | NPU |
| SINet | QNN_DLC | w8a8 | Qualcomm® QCS8450 (Proxy) | 1.463 ms | 0 - 47 MB | NPU |
| SINet | QNN_DLC | w8a8 | Qualcomm® SA7255P | 2.549 ms | 0 - 35 MB | NPU |
| SINet | QNN_DLC | w8a8 | Qualcomm® SA8295P | 1.985 ms | 0 - 33 MB | NPU |
| SINet | QNN_DLC | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.648 ms | 0 - 38 MB | NPU |
| SINet | QNN_DLC | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.52 ms | 0 - 37 MB | NPU |
| SINet | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 1.087 ms | 0 - 46 MB | NPU |
| SINet | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 3.603 ms | 0 - 36 MB | NPU |
| SINet | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 1.635 ms | 0 - 2 MB | NPU |
| SINet | TFLITE | float | Qualcomm® SA8775P | 2.066 ms | 0 - 40 MB | NPU |
| SINet | TFLITE | float | Qualcomm® QCS9075 | 1.964 ms | 0 - 3 MB | NPU |
| SINet | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 2.552 ms | 0 - 50 MB | NPU |
| SINet | TFLITE | float | Qualcomm® SA7255P | 3.603 ms | 0 - 36 MB | NPU |
| SINet | TFLITE | float | Qualcomm® SA8295P | 2.488 ms | 0 - 36 MB | NPU |
| SINet | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.8 ms | 0 - 38 MB | NPU |
| SINet | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.638 ms | 0 - 38 MB | NPU |
| SINet | TFLITE | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.843 ms | 0 - 44 MB | NPU |
| SINet | TFLITE | w8a8 | Qualcomm® QCS6490 | 15.492 ms | 0 - 12 MB | NPU |
| SINet | TFLITE | w8a8 | Qualcomm® QCS8275 (Proxy) | 28.29 ms | 1 - 19 MB | CPU |
| SINet | TFLITE | w8a8 | Qualcomm® QCS8550 (Proxy) | 1.215 ms | 0 - 2 MB | NPU |
| SINet | TFLITE | w8a8 | Qualcomm® SA8775P | 1.489 ms | 0 - 38 MB | NPU |
| SINet | TFLITE | w8a8 | Qualcomm® QCS9075 | 1.373 ms | 0 - 3 MB | NPU |
| SINet | TFLITE | w8a8 | Qualcomm® QCM6690 | 14.238 ms | 0 - 31 MB | NPU |
| SINet | TFLITE | w8a8 | Qualcomm® QCS8450 (Proxy) | 1.415 ms | 0 - 44 MB | NPU |
| SINet | TFLITE | w8a8 | Qualcomm® SA7255P | 28.29 ms | 1 - 19 MB | CPU |
| SINet | TFLITE | w8a8 | Qualcomm® SA8295P | 1.919 ms | 0 - 32 MB | NPU |
| SINet | TFLITE | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.631 ms | 0 - 38 MB | NPU |
| SINet | TFLITE | w8a8 | Snapdragon® 7 Gen 4 Mobile | 5.701 ms | 0 - 35 MB | NPU |
| SINet | TFLITE | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.554 ms | 0 - 36 MB | NPU |
License
- The license for the original implementation of SINet can be found here.
References
- SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
