Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("philipk22/ind312-ft-v0")
# Run inference
sentences = [
'What regulatory framework does 21 CFR Part 312 pertain to as of January 23, 2025?',
'§ 312.315 Intermediate-size patient populations.\n21 CFR Part 312 (up to date as of 1/23/2025)\nInvestigational New Drug Application 21 CFR Part 312 (Jan. 23, 2025)\n21 CFR Part 312 (Jan. 23, 2025) (enhanced display) page 2 of 54',
'risk-benefit judgment in making the final decision on approvability. As part of this evaluation, consistent\nwith the statement of purpose in § 312.80, FDA will consider whether the benefits of the drug outweigh\nthe known and potential risks of the drug and the need to answer remaining questions about risks and\nbenefits of the drug, taking into consideration the severity of the disease and the absence of satisfactory\nalternative therapy.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
InformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.92 |
| cosine_accuracy@3 | 0.99 |
| cosine_accuracy@5 | 0.99 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.92 |
| cosine_precision@3 | 0.33 |
| cosine_precision@5 | 0.198 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.92 |
| cosine_recall@3 | 0.99 |
| cosine_recall@5 | 0.99 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9638 |
| cosine_mrr@10 | 0.9517 |
| cosine_map@100 | 0.9517 |
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
What is the scope of Part 312 in Title 21 regarding investigational new drug applications? |
Title 21 —Food and Drugs |
How does § 3126 address the labeling requirements for investigational new drugs? |
Title 21 —Food and Drugs |
What are the general principles outlined in § 31222 regarding the IND submission? |
§ 312.10 Waivers. |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: stepsper_device_train_batch_size: 10per_device_eval_batch_size: 10num_train_epochs: 10multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 10per_device_eval_batch_size: 10per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss | cosine_ndcg@10 |
|---|---|---|---|
| 0.625 | 50 | - | 0.9091 |
| 1.0 | 80 | - | 0.9209 |
| 1.25 | 100 | - | 0.9329 |
| 1.875 | 150 | - | 0.9439 |
| 2.0 | 160 | - | 0.9379 |
| 2.5 | 200 | - | 0.9367 |
| 3.0 | 240 | - | 0.9459 |
| 3.125 | 250 | - | 0.9432 |
| 3.75 | 300 | - | 0.9479 |
| 4.0 | 320 | - | 0.9515 |
| 4.375 | 350 | - | 0.9509 |
| 5.0 | 400 | - | 0.9581 |
| 5.625 | 450 | - | 0.9551 |
| 6.0 | 480 | - | 0.9604 |
| 6.25 | 500 | 0.3078 | 0.9577 |
| 6.875 | 550 | - | 0.9651 |
| 7.0 | 560 | - | 0.9651 |
| 7.5 | 600 | - | 0.9641 |
| 8.0 | 640 | - | 0.9641 |
| 8.125 | 650 | - | 0.9638 |
| 8.75 | 700 | - | 0.9638 |
| 9.0 | 720 | - | 0.9638 |
| 9.375 | 750 | - | 0.9601 |
| 10.0 | 800 | - | 0.9638 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Snowflake/snowflake-arctic-embed-m